Abstract
Face recognition using depth data has attracted increasing attention from both academia and industry in the past five years. Previous works show a huge performance gap between high-quality and low-quality depth data. Due to the lack of databases and reasonable evaluations on data quality, very few researchers have focused on boosting depth-based face recognition by enhancing data quality or feature representation. In the paper, we carefully collect a new database including high-quality 3D shapes, low-quality depth images and the corresponding color images of the faces of 902 subjects, which have long been missing in the area. With the database, we make a standard evaluation protocol and propose three strategies to train low-quality depth-based face recognition models with the help of high-quality depth data. Our training strategies could serve as baselines for future research, and their feasibility of boosting low-quality depth-based face recognition is validated by extensive experiments.
Funder
National Key Research and Development Program of China;Shenzhen Fundamental Research fund;the National Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献