Bell-X, An Opportunistic Time Synchronization Mechanism for Scheduled Wireless Sensor Networks

Author:

Vera-Pérez JoseORCID,Todolí-Ferrandis David,Silvestre-Blanes JavierORCID,Sempere-Payá Víctor

Abstract

The Industrial Internet of Things (IIoT) is having an ever greater impact on industrial processes and the manufacturing sector, due the capabilities of massive data collection and interoperability with plant processes, key elements that are focused on the implementation of Industry 4.0. Wireless Sensor Networks (WSN) are one of the enabling technologies of the IIoT, due its self-configuration and self-repair capabilities to deploy ad-hoc networks. High levels of robustness and reliability, which are necessary in industrial environments, can be achieved by using the Time-Slotted Channel Hopping (TSCH) medium access the mechanism of the IEEE 802.15.4e protocol, penalizing other features, such as network connection and formation times, given that a new node does not know, a priori, the scheduling used by the network. This article proposes a new beacon advertising approach for a fast synchronization for networks under the TSCH-Medium Access Control (MAC) layer and Routing Protocol for Low-Power and Lossy Networks (RPL). This new method makes it possible to speed up the connection times of new nodes in an opportunistic way, while reducing the consumption and advertising traffic generated by the network.

Funder

Electronic Components and Systems for European Leadership

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference27 articles.

1. Industrial Communication Systems and Their Future Challenges: Next-Generation Ethernet, IIoT, and 5G

2. IEEE 802.15.4-2015. IEEE Standard for Local and Metropolitan Area Networks—Specific Requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (LR-WPANs),2015

3. Industrial Wireless Systems Guidelines: Practical Considerations and Deployment Life Cycle

4. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3