Combined Characterization of Airborne Saharan Dust above Sofia, Bulgaria, during Blocking-Pattern Conditioned Dust Episode in February 2021

Author:

Peshev Zahari1,Chaikovsky Anatoli2,Evgenieva Tsvetina1,Pescherenkov Vladislav2,Vulkova Liliya1ORCID,Deleva Atanaska1,Dreischuh Tanja1ORCID

Affiliation:

1. Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee Blvd, 1784 Sofia, Bulgaria

2. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68-2 Nezavisimosti Av., 220072 Minsk, Belarus

Abstract

The wintertime outbreaks of Saharan dust, increasing in intensity and frequency over the last decade, have become an important component of the global dust cycle and a challenging issue in elucidating its feedback to the ongoing climate change. For their adequate monitoring and characterization, systematic multi-instrument observations and multi-aspect analyses of the distribution and properties of desert aerosols are required, covering the full duration of dust events. In this paper, we present observations of Saharan dust in the atmosphere above Sofia, Bulgaria, during a strong dust episode over the whole of Europe in February 2021, conditioned by a persistent blocking weather pattern over the Mediterranean basin, providing clear skies and constant measurement conditions. This study was accomplished using different remote sensing (lidar, satellite, and radiometric), in situ (particle analyzing), and modeling/forecasting methods and resources, using real measurements and data (re)analysis. A wide range of columnar and range/time-resolved optical, microphysical, physical, topological, and dynamical characteristics of the detected aerosols dominated by desert dust are obtained and profiled with increased accuracy and reliability by combining the applied approaches and instruments in terms of complementarity, calibration, and normalization. Vertical profiles of the aerosol/dust total and mode volume concentrations are presented and analyzed using the LIRIC-2 inversion code joining lidar and sun-photometer data. The results show that interactive combining and use of various relevant approaches, instruments, and data have a significant synergistic effect and potential for verifying and improving theoretical models aimed at complete aerosol/dust characterization.

Funder

Ministry of Education and Science

Bulgarian National Science Fund

European Commission

Belarusian Republican Foundation for Fundamental Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3