D-VINS: Dynamic Adaptive Visual–Inertial SLAM with IMU Prior and Semantic Constraints in Dynamic Scenes

Author:

Sun Yang1,Wang Qing1,Yan Chao12,Feng Youyang1ORCID,Tan Rongxuan1,Shi Xiaoqiong1,Wang Xueyan1

Affiliation:

1. School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

2. School of Electrical Engineering and Automation, Changshu Institute of Technology, Changshu 215500, China

Abstract

Visual–inertial SLAM algorithms empower robots to autonomously explore and navigate unknown scenes. However, most existing SLAM systems heavily rely on the assumption of static environments, making them ineffective when confronted with dynamic objects in the real world. To enhance the robustness and localization accuracy of SLAM systems in dynamic scenes, this paper introduces a visual–inertial SLAM framework that integrates semantic and geometric information, called D-VINS. This paper begins by presenting a method for dynamic object classification based on the current motion state of features, enabling the identification of temporary static features within the environment. Subsequently, a feature dynamic check module is devised, which utilizes inertial measurement unit (IMU) prior information and geometric constraints from adjacent frames to calculate dynamic factors. This module also validates the classification outcomes of the temporary static features. Finally, a dynamic adaptive bundle adjustment module is developed, utilizing the dynamic factors of the features to adjust their weights during the nonlinear optimization process. The proposed methodology is evaluated using both public datasets and a dataset created specifically for this study. The experimental results demonstrate that D-VINS stands as one of the most real-time, accurate, and robust systems for dynamic scenes, showcasing its effectiveness in challenging real-world scenes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3