SAR and Optical Image Registration Based on Deep Learning with Co-Attention Matching Module

Author:

Chen Jiaxing12,Xie Hongtu12,Zhang Lin3,Hu Jun12,Jiang Hejun2,Wang Guoqian4

Affiliation:

1. School of Electronics and Communication Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China

2. Science and Technology on Near-Surface Detection Laboratory, Wuxi 214035, China

3. Department of Early Warning Technology, Air Force Early Warning Academy, Wuhan 430019, China

4. The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, China

Abstract

Image registration is the basis for the joint interpretation of synthetic aperture radar (SAR) and optical images. However, the significant nonlinear radiation difference (NRD) and the geometric imaging model difference render the registration quite challenging. To solve this problem, both traditional and deep learning methods are used to extract structural information with dense descriptions of the images, but they ignore that structural information of the image pair is coupled and often process images separately. In this paper, a deep learning-based registration method with a co-attention matching module (CAMM) for SAR and optical images is proposed, which integrates structural feature maps of the image pair to extract keypoints of a single image. First, joint feature detection and description are carried out densely in both images, for which the features are robust to radiation and geometric variation. Then, a CAMM is used to integrate both images’ structural features and generate the final keypoint feature maps so that the extracted keypoints are more distinctive and repeatable, which is beneficial to global registration. Finally, considering the difference in the imaging mechanism between SAR and optical images, this paper proposes a new sampling strategy that selects positive samples from the ground-truth position’s neighborhood and augments negative samples by randomly sampling distractors in the corresponding image, which makes positive samples more accurate and negative samples more abundant. The experimental results show that the proposed method can significantly improve the accuracy of SAR–optical image registration. Compared to the existing conventional and deep learning methods, the proposed method yields a detector with better repeatability and a descriptor with stronger modality-invariant feature representation.

Funder

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Science and Technology Program

Science and Technology on Near-Surface Detection Laboratory Pre-Research Foundation

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities, Sun Yat-sen University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3