An SAR Image Automatic Target Recognition Method Based on the Scattering Parameter Gaussian Mixture Model

Author:

Qin Jikai1ORCID,Liu Zheng1,Ran Lei1ORCID,Xie Rong1,Tang Junkui1,Zhu Hongyu1ORCID

Affiliation:

1. National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China

Abstract

General synthetic aperture radar (SAR) image automatic target recognition (ATR) methods perform well under standard operation conditions (SOCs). However, they are not effective in extended operation conditions (EOCs). To improve the robustness of the ATR system under various EOCs, an ATR method for SAR images based on the scattering parameter Gaussian mixture model (GMM) is proposed in this paper. First, an improved active contour model (ACM) is used for target–background segmentation, which is more robust against noise than the constant false alarm rate (CFAR) method. Then, as the extracted attributed scattering center (ASC) is sensitive to noise and resolution, the GMM is constructed using the extracted ASC set. Next, the weighted Gaussian quadratic form distance (WGQFD) is adopted to measure the similarity of GMMs for the recognition task, thereby avoiding false alarms and missed alarms caused by the varying number of scattering centers. Moreover, adaptive aspect–frame division is employed to reduce the number of templates and improve recognition efficiency. Finally, based on the public measured MSTAR dataset, different EOCs are constructed under noise, resolution change, model change, depression angle change, and occlusion of different proportions. The experimental results under different EOCs demonstrate that the proposed method exhibits excellent robustness while maintaining low computation time.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3