Author:
Zhu Yan,Yu Aihong,Rong Huan,Wang Dongqing,Song Yuqing,Liu Zhe,Sheng Victor S.
Abstract
The liver is an irreplaceable organ in the human body, maintaining life activities and metabolism. Malignant tumors of the liver have a high mortality rate at present. Computer-aided segmentation of the liver and tumors has significant effects on clinical diagnosis and treatment. There are still many challenges in the segmentation of the liver and liver tumors simultaneously, such as, on the one hand, that convolutional kernels with fixed geometric structures do not match complex, irregularly shaped targets; on the other, pooling during convolution results in a loss of spatial contextual information of images. In this work, we designed a cascaded U-ADenseNet with coarse-to-fine processing for addressing the above issues of fully automatic segmentation. This work contributes multi-resolution input images and multi-layered channel attention combined with atrous spatial pyramid pooling densely connected in the fine segmentation. The proposed model was evaluated by a public dataset of the Liver Tumor Segmentation Challenge (LiTS). Our approach attained competitive liver and tumor segmentation scores that exceeded other methods across a wide range of metrics.
Funder
the National Natural Science Foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献