Machine Learning-Augmented Micro-Defect Detection on Plastic Straw

Author:

Zhang Zhisheng1,Meng Peng1,Yang Yaxin1,Zhu Jianxiong123

Affiliation:

1. School of Mechanical Engineering, Southeast University, Nanjing 211189, China

2. Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China

3. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China

Abstract

Plastic straws are well-known tools to assist human beings in drinking fluid, but most of them have micro-defects including black spot defects, head problems, pressure tube defects, and sealing wrinkles. The manual detection of these defects has drawbacks such as low efficiency, a high false detection rate, and excessive labor. This paper proposed machine vision-based detection with self-adaption and high-accuracy characteristics. A serial synthesis of algorithms including homomorphic filtering, Nobuyuki Otsu, and morphological opening operations is proposed to obtain plastic straws with binary images with good performance, and it was further found that the convolutional neural network can be designed to realize the real-time recognition of black spot defects, where the corner detection algorithm demonstrates the linear fitting of the edge point of the straw with the effective detection of sealing wrinkle defects. We also demonstrated that the multi-threshold classification algorithm is used to detect defects effectively for head problems and pressure tube defects. The detection system based on machine vision successfully overcomes shortcomings of manual inspection, which has high inspection efficiency and adaptively detects multiple defects with 96.85% accuracy. This research can effectively help straw companies achieve high-quality automated production and promotes the application of machine vision in plastic straw defects with the aid of machine learning.

Funder

National Natural Science Foundation of China

The dual creative talents from Jiangsu Province

National Natural Science Foundation of Jiangsu Province

Guangxi Key Laboratory of Automatic Detecting Technology and Instruments

Open Project Program of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University

Publisher

MDPI AG

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3