Assessing the Accuracy of Artificial Intelligence Models in Scoliosis Classification and Suggested Therapeutic Approaches

Author:

Fabijan Artur1ORCID,Zawadzka-Fabijan Agnieszka2ORCID,Fabijan Robert3,Zakrzewski Krzysztof1,Nowosławska Emilia1,Polis Bartosz1

Affiliation:

1. Department of Neurosurgery, Polish-Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland

2. Department of Rehabilitation Medicine, Faculty of Health Sciences, Medical University of Lodz, 90-419 Lodz, Poland

3. Independent Researcher, Luton LU2 0GS, UK

Abstract

Background: Open-source artificial intelligence models (OSAIMs) are increasingly being applied in various fields, including IT and medicine, offering promising solutions for diagnostic and therapeutic interventions. In response to the growing interest in AI for clinical diagnostics, we evaluated several OSAIMs—such as ChatGPT 4, Microsoft Copilot, Gemini, PopAi, You Chat, Claude, and the specialized PMC-LLaMA 13B—assessing their abilities to classify scoliosis severity and recommend treatments based on radiological descriptions from AP radiographs. Methods: Our study employed a two-stage methodology, where descriptions of single-curve scoliosis were analyzed by AI models following their evaluation by two independent neurosurgeons. Statistical analysis involved the Shapiro–Wilk test for normality, with non-normal distributions described using medians and interquartile ranges. Inter-rater reliability was assessed using Fleiss’ kappa, and performance metrics, like accuracy, sensitivity, specificity, and F1 scores, were used to evaluate the AI systems’ classification accuracy. Results: The analysis indicated that although some AI systems, like ChatGPT 4, Copilot, and PopAi, accurately reflected the recommended Cobb angle ranges for disease severity and treatment, others, such as Gemini and Claude, required further calibration. Particularly, PMC-LLaMA 13B expanded the classification range for moderate scoliosis, potentially influencing clinical decisions and delaying interventions. Conclusions: These findings highlight the need for the continuous refinement of AI models to enhance their clinical applicability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3