Exploring Pattern of Relapse in Pediatric Patients with Acute Lymphocytic Leukemia and Acute Myeloid Leukemia Undergoing Stem Cell Transplant Using Machine Learning Methods

Author:

Shyr David1ORCID,Zhang Bing M.2,Saini Gopin3,Brewer Simon C.4

Affiliation:

1. Department of Pediatrics, Division of Pediatric Hematology/Oncology, Section of Stem Cell Transplant, Stanford University, Stanford, CA 94305, USA

2. Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA

3. Stem Cell and Gene Therapy Clinical Trial Program, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA

4. Department of Geography, University of Utah, Salt Lake City, UT 84112, USA

Abstract

Background. Leukemic relapse remains the primary cause of treatment failure and death after allogeneic hematopoietic stem cell transplant. Changes in post-transplant donor chimerism have been identified as a predictor of relapse. A better predictive model of relapse incorporating donor chimerism has the potential to improve leukemia-free survival by allowing earlier initiation of post-transplant treatment on individual patients. We explored the use of machine learning, a suite of analytical methods focusing on pattern recognition, to improve post-transplant relapse prediction. Methods. Using a cohort of 63 pediatric patients with acute lymphocytic leukemia (ALL) and 46 patients with acute myeloid leukemia (AML) who underwent stem cell transplant at a single institution, we built predictive models of leukemic relapse with both pre-transplant and post-transplant patient variables (specifically lineage-specific chimerism) using the random forest classifier. Local Interpretable Model-Agnostic Explanations, an interpretable machine learning tool was used to confirm our random forest classification result. Results. Our analysis showed that a random forest model using these hyperparameter values achieved 85% accuracy, 85% sensitivity, 89% specificity for ALL, while for AML 81% accuracy, 75% sensitivity, and 100% specificity at predicting relapses within 24 months post-HSCT in cross validation. The Local Interpretable Model-Agnostic Explanations tool was able to confirm many variables that the random forest classifier identified as important for the relapse prediction. Conclusions. Machine learning methods can reveal the interaction of different risk factors of post-transplant leukemic relapse and robust predictions can be obtained even with a modest clinical dataset. The random forest classifier distinguished different important predictive factors between ALL and AML in our relapse models, consistent with previous knowledge, lending increased confidence to adopting machine learning prediction to clinical management.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3