Multimodal Data Based Regression to Monitor Air Pollutant Emission in Factories

Author:

Wu Hao,Gao XinweiORCID

Abstract

Air pollution originating from anthropogenic emission, which is an important factor for environmental policy to regulate the sustainable development of enterprises and the environment. However, the missing or mislabeled discharge data make it impossible to apply this strategy in practice. In order to solve this challenge, we firstly discover that the energy consumption in a factory and the air pollutants are linearly related. Given this observation, we propose a support vector regression based Single-location recovery model to recover the air pollutant emission by using the energy consumption data in a factory. To further improve the precision of air pollutant emission estimation, we proposed a Gaussian process regression based multiple-location recovery model to estimate and recover the missing or mislabeled air pollutant emission from surrounding available air quality readings, collected by the government’s air quality monitoring station. Moreover, we optimally combine the two approaches to achieve the accurate air air pollutant emission estimation. To our best of knowledge, this is the first paper for monitoring the air pollutant emission taking both a factory’s energy consumption and government’s air quality readings into account. The research model in this article uses actual data(10,406,880 entries of data including weather, PM 2.5, date, etc.) from parts of Shandong Province, China. The dataset contains 33 factories (5 types) and we use the co-located air quality monitoring station as ground truth. The results show that, our proposed single-location recovery, multi-location recovery, and combined method could acquire the mean absolute error of 8.45, 9.69, and 7.25, respectively. The method has consistent accurate prediction behavior among 5 different factory types, shows a promising potential to be applied in broader locations and application areas, and outperforms the existing spatial interpolation based methods by 43.8%.

Funder

The National Social Science Fund of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3