A Framework of an Integrated Livestock Vehicle Trajectory Database Using Digital Tachograph Data

Author:

Jeong HeehyeonORCID,Hong JungyeolORCID,Park Dongjoo

Abstract

The outbreak of African swine fever virus has raised global concerns regarding epidemic livestock diseases. Therefore, various studies have attempted to prevent and monitor epidemic livestock diseases. Most of them have emphasized that integrated studies between the public health and transportation engineering are essential to prevent the livestock disease spread. However, it has been difficult to obtain big data related to the mobility of livestock-related vehicles. Thus, it is challenging to conduct research that comprehensively considers cargo vehicles’ movement carrying livestock and the spread of livestock infectious diseases. This study developed the framework for integrating the digital tachograph data (DTG) and trucks’ visit history of livestock facility data. The DTG data include commercial trucks’ coordinate information, but it excludes actual livestock-related vehicle trajectories such as freight types and facility visit history. Therefore, the integrated database we developed can be used as a significant resource for preventing the spread of livestock epidemics by pre-monitoring livestock transport vehicles’ movements. In future studies, epidemiological research on infectious diseases and livestock species will be able to conduct through the derived integrating database. Furthermore, the indicators of the spread of infectious diseases could be suggested based on both microscopic and macroscopic roadway networks to manage livestock epidemics.

Funder

The Ministry of Land, Infrastructure and Transport of the Korean government

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting Bus Travel Time in Cheonan City through Deep Learning Utilizing Digital Tachograph Data;Electronics;2024-05-03

2. About privacy on smart tachographs: Reconstructing car-driven routes based on speed measurements;Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geo-Privacy and Data Utility for Smart Societies;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3