Influence of the External Environment on the Moisture Spectrum of Norway Spruce (Picea abies (L.) KARST.)

Author:

Lexa Martin1ORCID,Fojtík Roman1,Dubovský Viktor2ORCID,Sedlecký Miroslav1,Zeidler Aleš1ORCID,Sikora Adam1ORCID

Affiliation:

1. Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic

2. Department of Mathematics, Faculty of Civil Engineering, VSB-TU Ostrava, Ludvíka Podéště 1875/17, 708 00 Ostrava, Czech Republic

Abstract

The fluctuation of relative humidity and temperature in the surrounding environments of wood products is an important parameter influencing their mechanical properties. The objective of this study was to investigate the complex relationship between the moisture content and mechanical properties of wood as a critical aspect in the design of durable and reliable structures. Over a period of 669 days, a simulated type of experiment was conducted, during which the moisture content and external temperature were continuously measured in a compact profile of Norway spruce (Picea abies (L.) KARST.). The data were processed using quadratic and cubic models to establish a predictive model. It was found that the quadratic models slightly outperformed the cubic models when considering time lags greater than six days. The final model demonstrated a significant improvement in explaining the variance of the dependent variable compared to the basic model. Based on these findings, it can be concluded that understanding the relationship between the moisture content and temperature of wood samples plays an important role in wood’s efficient use, particularly for timber constructions. This understanding is vital for accurately predicting the mechanical characteristics of wood, which, in turn, contributes to the development of more durable and reliable structures.

Funder

EVA 4.0.—Advanced research supporting the forestry and wood-processing sector’s adaptation to global change and the 4th industrial revolution, OP RDE

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3