Affiliation:
1. Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Technion–Israel Institute of Technology, Haifa 3200003, Israel
2. Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Haifa 3200003, Israel
Abstract
Tuberculosis (TB) has long been recognized as a significant health concern worldwide. Recent advancements in noninvasive wearable devices and machine learning (ML) techniques have enabled rapid and cost-effective testing for the real-time detection of TB. However, small datasets are often encountered in biomedical and chemical engineering domains, which can hinder the success of ML models and result in overfitting issues. To address this challenge, we propose various data preprocessing methods and ML approaches, including long short-term memory (LSTM), convolutional neural network (CNN), Gramian angular field-CNN (GAF-CNN), and multivariate time series with MinCutPool (MT-MinCutPool), for classifying a small TB dataset consisting of multivariate time series (MTS) sensor signals. Our proposed methods are compared with state-of-the-art models commonly used in MTS classification (MTSC) tasks. We find that lightweight models are more appropriate for small-dataset problems. Our experimental results demonstrate that the average performance of our proposed models outperformed the baseline methods in all aspects. Specifically, the GAF-CNN model achieved the highest accuracy of 0.639 and the highest specificity of 0.777, indicating its superior effectiveness for MTSC tasks. Furthermore, our proposed MT-MinCutPool model surpassed the baseline MTPool model in all evaluation metrics, demonstrating its viability for MTSC tasks.
Funder
Phase-II Grand Challenges Explorations award of the Bill and Melinda Gates Foundation
Horizon 2020 ICT grant under the A-Patch project
Subject
Electrical and Electronic Engineering