Applications of Sustainable Hybrid Energy Harvesting: A Review

Author:

Shaukat Hamna1,Ali Ahsan2,Ali Shaukat2ORCID,Altabey Wael A.34ORCID,Noori Mohammad56ORCID,Kouritem Sallam A.3ORCID

Affiliation:

1. Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Haripur 22621, Pakistan

2. Department of Mechatronics Engineering, University of Wah, Wah Cantonment 47040, Pakistan

3. Department of Mechanical Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt

4. International Institute of Urban Systems Engineering (IIUSE), Southeast University, Nanjing 210096, China

5. Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, CA 93405, USA

6. School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK

Abstract

This paper provides a short review of sustainable hybrid energy harvesting and its applications. The potential usage of self-powered wireless sensor (WSN) systems has recently drawn a lot of attention to sustainable energy harvesting. The objective of this research is to determine the potential of hybrid energy harvesters to help single energy harvesters overcome their energy deficiency problems. The major findings of the study demonstrate how hybrid energy harvesting, which integrates various energy conversion technologies, may increase power outputs, and improve space utilization efficiency. Hybrid energy harvesting involves collecting energy from multiple sources and converting it into electrical energy using various transduction mechanisms. By properly integrating different energy conversion technologies, hybridization can significantly increase power outputs and improve space utilization efficiency. Here, we present a review of recent progress in hybrid energy-harvesting systems for sustainable green energy harvesting and their applications in different fields. This paper starts with an introduction to hybrid energy harvesting, showing different hybrid energy harvester configurations, i.e., the integration of piezoelectric and electromagnetic energy harvesters; the integration of piezoelectric and triboelectric energy harvesters; the integration of piezoelectric, triboelectric, and electromagnetic energy harvesters; and others. The output performance of common hybrid systems that are reported in the literature is also outlined in this review. Afterwards, various potential applications of hybrid energy harvesting are discussed, showing the practical attainability of the technology. Finally, this paper concludes by making recommendations for future research to overcome the difficulties in developing hybrid energy harvesters. The recommendations revolve around improving energy conversion efficiency, developing advanced integration techniques, and investigating new hybrid configurations. Overall, this study offers insightful information on sustainable hybrid energy harvesting together with quantitative information, numerical findings, and useful research recommendations that progress and promote the use of this technology.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3