Treatment of Infectious Waste through the Application Rotary Kiln Incinerators and Ozone Technology

Author:

Khannam Khomson,Vattanapuripakorn WenichORCID,Sonsupap Sathapon,Sarasamkan JiradanaiORCID,Tongsantia Umakorn,Bubphachot BopitORCID

Abstract

The alarming rate at which infectious waste is growing was an unsolved problem worldwide before the pandemic, and it has only gotten worse. It is especially prominent in the medical services, owing to the improper use or the lack of high-efficiency waste management systems. To address this issue, this paper presents a modification to the conventional rotary kiln incineration method using add-on ozone (O3) at a concentration of 100–160 g/h in order to enhance its efficiency when treating emitted air pollutants. These pollutants of Hg, HF, TSP, SO2, NO2, CO, and HCl were measured, and their percent opacity concentrations were 0.006 mg/m3, 0.680 mg/m3, 21.900 mg/m3, 5.600 mg/m3, 16.300 mg/m3, 13.700 mg/m3, 0.022 mg/m3, and 6%, respectively. The amounts of these air pollutants were considerably lower than those released from a rotary kiln incinerator without the add-on ozone. Additionally, all the measurements were lower than the emission thresholds established in the US Environmental Protection Agency Emission Standards Reference Guide. Therefore, using the proposed rotary kiln incineration method modified with add-on ozone is suitable for use in the elimination of infectious waste in that it drastically reduces air pollution and improves air quality, resulting in environmental improvements aimed at mitigating the devastating impacts pollution has on human health.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Reference41 articles.

1. The Statistic of Solid Wastehttps://www.pcd.go.th/garbage/

2. Assessment of Medical Waste Disposal Technologies Based on the AHP;Xu;Huan Jing Ke Xue,2018

3. High temperature suppression of dioxins

4. Emission reduction research and development of PCDD/Fs in the iron ore sintering

5. Open burning as a source of dioxins

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3