Transcriptomic Changes during Previtellogenic and Vitellogenic Stages of Ovarian Development in Wreckfish (Hāpuku), Polyprion oxygeneios (Perciformes)

Author:

Wylie Matthew,Symonds Jane,Setiawan Alvin,Irvine Glen,Liu Hui,Elizur Abigail,Lokman P

Abstract

‘Wreckfish’ a collective of species belonging to the family Polyprionidae, are an important commercial fishery and have significant aquaculture potential. Until now, genomic or transcriptomic information for any species within the genus Polyprion has either remained unpublished or is non-existent. Using Illumina HiSeq, we compared the transcriptomes of hāpuku (Polyprion oxygeneios) ovaries to explore developmental stage-specific variations underlying their reproductive physiology. We sought to identify differentially expressed genes and the associated shifts in biological pathways between previtellogenic and early vitellogenic ovaries. Ovarian tissue was repeatedly biopsied by gonopore cannulation from the same females (n = 3) throughout oogenesis. Reproductive status of initial biopsies was confirmed as being previtellogenic and that in biopsies collected eight weeks later as early vitellogenic. A de novo hāpuku transcriptome was assembled (146,189 transcripts) from RNA-Seq data without a reference genome. On average, each tissue sample contained 17.5 million trimmed reads. Gene annotation was 80% when using BLASTX against Genbank Non Redundant database. Fifty-three transcripts were differentially expressed within the FDR of 0.05 when previtellogenic and early vitellogenic ovaries were compared; this reduced to 35 differentially expressed genes when transcript duplications were pooled. Among these were genes tentatively associated with the electron transport chain, lipid metabolism, steroidogenesis and mineral/solute transportation. These data provide a snap-shot into stage-specific physiological events during oogenesis in the ovary of a teleost and an extensive molecular resource for research on species in the Genus Polyprion.

Funder

National Institute of Water and Atmospheric Research

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3