Effects of Elevated Atmospheric CO2 Concentration on Insect Herbivory and Nutrient Fluxes in a Mature Temperate Forest

Author:

Roberts AradhanaORCID,Crowley LiamORCID,Sadler Jon,Nguyen Tien,Gardner AnnaORCID,Hayward Scott,Metcalfe Daniel

Abstract

Insect herbivory is one of the most important ecological processes affecting plant–soil feedbacks and overall forest ecosystem health. In this study, we assess how elevated carbon dioxide (eCO2) impacts (i) leaf level insect herbivory and (ii) the stand-level herbivore-mediated transfer of carbon (C) and nitrogen (N) from the canopy to the ground in a natural mature oak temperate forest community in central England at the Birmingham Institute of Forest Research Free Air CO2 Enrichment (BIFoR FACE) site. Recently abscised leaves were collected every two weeks through the growing season in August to December from 2017–2019, with the identification of four dominant species: Quercus robur (pedunculate oak), Acer pseudoplatanus (sycamore), Crataegus monogyna (common hawthorn) and Corylus avellana (hazel). The selected leaves were scanned and visually analyzed to quantify the leaf area loss from folivory monthly. Additionally, the herbivore-mediated transfer of C and N fluxes from the dominant tree species Q. robur was calculated from these leaf-level folivory estimates, the total foliar production and the foliar C and N contents. This study finds that the leaf-level herbivory at the BIFoR FACE has not changed significantly across the first 3 years of eCO2 treatment when assessed across all dominant tree species, although we detected significant changes under the eCO2 treatment for individual tree species and years. Despite the lack of any strong leaf-level herbivory response, the estimated stand-level foliar C and N transferred to the ground via herbivory was substantially higher under eCO2, mainly because there was a ~50% increase in the foliar production of Q. robur under eCO2. This result cautions against concluding much from either the presence or absence of leaf-level herbivory responses to any environmental effect, because their actual ecosystem effects are filtered through so many (usually unmeasured) factors.

Funder

European Research Council

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3