Abstract
The understanding of spatial distribution patterns of native riparian tree species in Europe lacks accurate species distribution models (SDMs), since riparian forest habitats have a limited spatial extent and are strongly related to the associated watercourses, which needs to be represented in the environmental predictors. However, SDMs are urgently needed for adapting forest management to climate change, as well as for conservation and restoration of riparian forest ecosystems. For such an operative use, standard large-scale bioclimatic models alone are too coarse and frequently exclude relevant predictors. In this study, we compare a bioclimatic continent-wide model and a regional model based on climate, soil, and river data for central to south-eastern Europe, targeting seven riparian foundation species—Alnus glutinosa, Fraxinus angustifolia, F. excelsior, Populus nigra, Quercus robur, Ulmus laevis, and U. minor. The results emphasize the high importance of precise occurrence data and environmental predictors. Soil predictors were more important than bioclimatic variables, and river variables were partly of the same importance. In both models, five of the seven species were found to decrease in terms of future occurrence probability within the study area, whereas the results for two species were ambiguous. Nevertheless, both models predicted a dangerous loss of occurrence probability for economically and ecologically important tree species, likely leading to significant effects on forest composition and structure, as well as on provided ecosystem services.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献