Analysis of Mediterranean Vegetation Fuel Type Changes Using Multitemporal LiDAR

Author:

García-Cimarras AlbaORCID,Manzanera José AntonioORCID,Valbuena RubénORCID

Abstract

Increasing fire size and severity over the last few decades requires new techniques to accurately assess canopy fuel conditions and change over larger areas. This article presents an analysis on vegetation changes by mapping fuel types (FT) based on conditional rules according to the Prometheus classification system, which typifies the vertical profile of vegetation cover for fuel management and ecological purposes. Using multi-temporal LiDAR from the open-access Spanish national surveying program, we selected a 400 ha area of interest, which was surveyed in 2010 and 2016 with scan densities of 0.5 and 2 pulses·m−2, respectively. FTs were determined from the distribution of LiDAR heights over an area, using grids with a cell size of 20 × 20 m. To validate the classification method, we used a stratified random sampling without replacement of 15 cells per FT and made an independent visual assessment of FT. The overall accuracy obtained was 81.26% with a Kappa coefficient of 0.73. In addition, the relationships among different stand structures and ecological factors such as topographic aspect and forest vegetation cover types were analyzed. Our classification algorithm revealed that stands lacking understory vegetation usually appeared in shady slopes, which were mainly covered by beech stands, whereas sunny areas were preferentially covered by oak stands, where the understory reached greater height thanks to more light availability. Our analysis on FT changes during that 6 year time span revealed potentially hazardous transitions from cleared forests towards a vertical continuum of canopy fuels, where wildfire events would potentially reach tree crowns, especially in oak forests and southern slopes with higher sun exposure for lower fuel moistures and increased flammability. Accurate methods to characterize forest canopy fuels and change over time can help direct forest management activities to priority areas with greater fire hazard. Multi-date canopy fuel information indicated that while some forest types experienced a growth of the shrub layer, others presented an understory decrease. On the other hand, loss of understory was more frequently detected in beech stands; thus, those forests place lower risk of wildfire spread. Our approach was developed using low-density and publicly available datasets and was based on direct canopy fuel measurements from multi-return LiDAR data that can be accurately translated and mapped according to standard fuel type categories that are familiar to land managers.

Funder

Ministerio de Educación, Cultura y Deporte

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3