Deep Learning-Based Automatic Modulation Classification Using Robust CNN Architecture for Cognitive Radio Networks

Author:

Abd-Elaziz Ola Fekry1,Abdalla Mahmoud12,Elsayed Rania A.1ORCID

Affiliation:

1. Electronics and Communications Engineering, Zagazig University, Zagazig 44519, Egypt

2. Department of Electronics and Communications Engineering, October 6 University, 6th of October City 12585, Egypt

Abstract

Automatic modulation classification (AMC) is an essential technique in intelligent receivers of non-cooperative communication systems such as cognitive radio networks and military applications. This article proposes a robust automatic modulation classification model based on a new architecture of a convolutional neural network (CNN). The basic building convolutional blocks of the proposed model include asymmetric kernels organized in parallel combinations to extract more meaningful and powerful features from the raw I/Q sequences of the received signals. These blocks are connected via skip connection to avoid vanishing gradient problems. The experimental results reveal that the proposed model performs well in classifying nine different modulation schemes simulated with different real wireless channel impairments, including AWGN, Rician multipath fading, and clock offset. The performance of the proposed system systems shows that it outperforms its best rivals from the literature in recognizing the modulation type. The proposed CNN architecture remarkably improves classification accuracy at low SNRs, which is appropriate in realistic scenarios. It achieves 86.1% accuracy at −2 dB SNR. Furthermore, it reaches an accuracy of 96.5% at 0 dB SNR and 99.8% at 10 dB SNR. The proposed architecture has strong feature extraction abilities that can effectively recognize 16QAM and 64QAM signals, the challenging modulation schemes of the same modulation family, with an overall average accuracy of 81.02%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3