Electricity Curtailment Cost Coupled to Operation Model Facilitates Clean Energy Accommodation in Grid-Connected System

Author:

Ma Qiumei,Zhao Yawei,Ji Changming,Zhang Yanke,Ming Bo

Abstract

Electricity transmission in a grid-connected system provides an effective solution to promoting clean energy accommodation. However, with arbitrary determination in current operation models, the clean energy utilization ratio (CEUR) is not satisfactory largely due to the lack of electricity curtailment (the electricity equivalent of clean energy curtailment) cost-dependent optimization. In this study, a curtailment cost-dependent multi-objective operation (CCMO) model was proposed to complementarily operate a grid-connected hybrid energy system, identify optimal CEUR, and thus maximally reduce electricity curtailment. The CCMO model centers on coupling the punishment cost of electricity curtailment with the multi-objective function defined as the total cost of each grid component. The CCMO model was solved to derive the optimal equilibrium solution determined based on multiple non-dominated solutions. A grid-connected hybrid energy system including the Yunnan, Guangdong, and Guangxi Power Grids was used to test the model performance. The results showed that the CCMO model’s CEUR was up to 100% at hourly scale and 96.9% on daily average, which were both significantly higher than those in the current operation models. Furthermore, the CCMO’s optimal equilibrium solution, i.e., respective minimum total cost of each grid component, can also identify optimal transmission schemes of the daily channel utilization to make the peak utilization hours largest.

Funder

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3