A Prediction Model for Battery Electric Bus Energy Consumption in Transit

Author:

Abdelaty Hatem,Mohamed MoatazORCID

Abstract

This study investigates the impacts of vehicular, operational, topological, and external parameters on the energy consumption (EC) of battery-electric buses (BEBs) in transit operation. Furthermore, the study develops a data-driven prediction model for BEB energy consumption in transit operation that considers these four parameters. A Simulink energy model is developed to estimate the EC rates and validated using the Altoona’s test real-world data. A full-factorial experiment is used to generate 907,199 scenarios for BEB operation informed by 120 real-world drive cycles. A multivariate multiple regression model was developed to predict BEB’s EC. The regression model explained more than 96% of the variation in the EC of the BEBs. The results show the significant impacts of road grade, the initial state of charge, road condition, passenger loading, driver aggressiveness, average speed, HVAC, and stop density on BEB’s energy consumption, each with a different magnitude. The study concluded that the optimal transit profile for BEB operation is associated with rolling grade and relatively lower stop density (one to two stops/km).

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3