Software-in-the-Loop Simulation of a Gas-Engine for the Design and Testing of a Wind Turbine Emulator

Author:

Rohr Alexander,Jauch ClemensORCID

Abstract

In order to investigate the grid integration of wind turbines (WT) of various scales and designs, a wind turbine emulator (WTE) is being built in Flensburg within the state-funded project GrinSH. The special feature of this WTE is the use of a large gas engine instead of an electric motor to emulate the behavior of a WT. In order to develop the controls of this innovative WTE and to design the upcoming test runs under safe conditions, a software in the loop model (SILM) was applied. This SILM contained a mathematical model of the wind turbine, mathematical models of the gas engine with an integrated controller, and a model of the generator and frequency converter unit, as well as a preventive modulator of the reference signal (PMRS). The PMRS module converts the reference signal of the emulated WT in such a way that the dynamics of the engine components can be calculated and balanced in advance to enable the required behavior of the entire SILM despite the dynamics of the gas engine. It was found that the PMRS module, developed and tested in this work, increased the ability of the WTE, based on a gas engine, to reproduce the dynamics of a WT.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference22 articles.

1. Accelerated Testing of Rotor Blade Bearings: Test Bench Proves Successful in Regular Operation; Fraunhofer IWES: 19 January 2021 https://www.energie.fraunhofer.de/en/press-media/press-release/press-realeases-2021/PI-210113-fraunhofer-iwes-accelerated-ttesting-of-rotor-blade-bearings.html

2. The relevance of inertia in power systems

3. Increased Wind Energy Yield and Grid Utilisation with Continuous Feed-In Management

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3