Analysis of the Effects of the Location of Passive Control Devices on the Platform of a Floating Wind Turbine

Author:

Galán-Lavado Antonio,Santos MatildeORCID

Abstract

Floating offshore wind turbines (FOWT) are subjected to strong loads, mainly due to wind and waves. These disturbances cause undesirable vibrations that affect the structure of these devices, increasing the fatigue and reducing its energy efficiency. Among others, a possible way to enhance the performance of these wind energy devices installed in deep waters is to combine them with other marine energy systems, which may, in addition, improve its stability. The purpose of this work is to analyze the effects that installing some devices on the platform of a barge-type wind turbine have on the vibrations of the structure. To do so, two passive control devices, TMD (Tuned Mass Damper), have been installed on the platform of the floating device, with different positions and orientations. TMDs are usually installed in the nacelle or in the tower, which imposes space, weight, and size hard constraints. An analysis has been carried out, using the FAST software model of the NREL-5MW FOWT. The results of the suppression rate of the tower top displacement and the platform pitch have been obtained for different locations of the structural control devices. They have been compared with the system without TMD. As a conclusion, it is possible to say that these passive devices can improve the stability of the FOWT and reduce the vibrations of the marine turbine. However, it is indispensable to carry out a previous analysis to find the optimal orientation and position of the TMDs on the platform.

Funder

Ministerio de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3