Abstract
Nanomaterials with collective optical and magnetic properties are called smart or functional materials and have promising applications in many fields of science and technology. Undoped and Co-doped ZnAl2O4 were prepared using a co-precipitation-assisted hydrothermal method. A systematic investigation was carried out to understand the effects of the Co concentration on the crystalline phase, morphology, and optical and magnetic properties of Co-doped ZnAl2O4. X-ray diffraction confirmed the cubic spinel structure with the Fd3m space group, and there was no impurity phase. X-ray photoelectron spectroscopy of Co-doped ZnAl2O4 confirmed the existence of Zn, Al and O, and the Co in the optimized sample of ZAO-Co-3 confirmed the oxidation state of cobalt as Co2+. Transmission electron microscopy of pure and Co-doped ZnAl2O4 revealed micro-hexagons and nanosheets, respectively. The optical absorption results showed that the bandgap of ZnAl2O4 decreased with increasing Co concentration. The hysteresis loop of Co-doped ZnAl2O4 revealed clear ferromagnetic behavior at room temperature. The as-prepared materials are suitable for energy storage applications, such as in supercapacitors and fuel cells. This work aims to focus on the effect of cobalt ions in different concentrations on structural, optical and magnetic properties.
Funder
National Research Foundation of Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献