Abstract
Empirical models continue to play a significant role in the design process of multiphase chemical reactors, particularly riser reactors in circulating fluidized bed (CFB) processes. It is imperative that accurate, industrial relevant correlations are developed to aid these design efforts. Using poor correlations could result in startup issues and significant redesign work. In this work, a new correlation is proposed to predict the saturation carrying capacity of Geldart Group A particles. This new correlation improves upon the currently available correlations for these materials and covers a broad range of Geldart Group A particles (particle diameters from 52 to 70 µm, and Archimedes numbers ranging from 5 to 20), superficial gas velocities (1 to 4 m/s), and riser diameters (0.066 to 0.3048 m). The new correlation has an Absolute Average Percent Deviation of only 17.6%, making it the most accurate correlation for Geldart Group A particles in the current literature.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献