Actinidia chinensis Planch Ameliorates Photoaging in UVB-Irradiated NIH-3T3 Cells and SKH-1 Hairless Mice by Controlling the Reactive Oxygen Species/AKT Pathway

Author:

Jung Jong-Min1,Kim Seo-Young1,Kwon Oh-Yun1,Lee Seung-Ho1ORCID

Affiliation:

1. Department of Nano-Bioengineering, Incheon National University, 119 Academy-ro, Incheon 22012, Republic of Korea

Abstract

In this study, we evaluated the antiphotoaging properties of Actinidia chinensis Planch (ACP) and the molecular mechanisms underlying its ability to prevent UVB-mediated photoaging. Administration of the ethanolic extract of ACP (EEACP) to the dorsal area of hairless mice effectively ameliorated UVB-mediated wrinkle formation, epidermal thickening, and loss of lipid droplets in the epidermis. Additionally, the UVB-induced loss of collagen content in the epidermis was significantly attenuated in mouse skin treated with EEACP. The expression of procollagen type 1 and metalloproteinase-1a, which are related to collagen content in the epidermis, was restored by EEACP treatment in UVB-irradiated mice and NIH-3T3 mouse skin fibroblast cells. Interestingly, EEACP effectively ameliorated UVB-induced reactive oxygen species overproduction. Furthermore, the activation/phosphorylation of AKT, rather than mitogen-activated protein kinases, has been identified as a major target of EEACP in preventing UVB-mediated photoaging. Additionally, N-(1 deoxy-1-fructosyl) valine and phenethylamine glucuronide were identified as analytical indicators of EEACP using high-performance liquid chromatography/mass spectrometry. These results suggest that EEACP can be developed as a functional natural agent capable of preventing photoaging by attenuating UVB-induced activation of the reactive oxygen species/AKT pathway.

Funder

Incheon National University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3