Identification of New, Translatable ProtectomiRs against Myocardial Ischemia/Reperfusion Injury and Oxidative Stress: The Role of MMP/Biglycan Signaling Pathways

Author:

Szabados Tamara1ORCID,Molnár Arnold12,Kenyeres Éva1,Gömöri Kamilla1ORCID,Pipis Judit12,Pósa Bence1,Makkos András3,Ágg Bence23ORCID,Giricz Zoltán23ORCID,Ferdinandy Péter23,Görbe Anikó123,Bencsik Péter12ORCID

Affiliation:

1. Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary

2. Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary

3. Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary

Abstract

Introduction: Ischemic conditionings (ICon) were intensively investigated and several protective signaling pathways were identified. Previously, we have shown the role of matrix metalloproteinases (MMP) in myocardial ischemia/reperfusion injury (MIRI) and the cardioprotective role of biglycan (BGN), a small leucine-rich proteoglycan in vitro. Here, we hypothesized that cardiac MMP and BGN signaling are involved in the protective effects of ICon. Methods: A reverse target-microRNA prediction was performed by using the miRNAtarget™ 2.0 software to identify human microRNAs with a possible regulatory effect on MMP and BGN, such as on related genes. To validate the identified 1289 miRNAs in the predicted network, we compared them to two cardioprotective miRNA omics datasets derived from pig and rat models of MIRI in the presence of ICons. Results: Among the experimentally measured miRNAs, we found 100% sequence identity to human predicted regulatory miRNAs in the case of 37 porcine and 24 rat miRNAs. Upon further analysis, 42 miRNAs were identified as MIRI-associated miRNAs, from which 24 miRNAs were counter-regulated due to ICons. Conclusions: Our findings highlight 24 miRNAs that potentially regulate cardioprotective therapeutic targets associated with MMPs and BGN in a highly translatable porcine model of acute myocardial infarction.

Funder

National Research Development and Innovation Office of Hungary

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3