Role of Myeloperoxidase, Oxidative Stress, and Inflammation in Bronchopulmonary Dysplasia

Author:

Wu Tzong-Jin12,Jing Xigang12,Teng Michelle12,Pritchard Kirkwood A.23ORCID,Day Billy W.4ORCID,Naylor Stephen4ORCID,Teng Ru-Jeng12ORCID

Affiliation:

1. Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA

2. Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA

3. Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA

4. ReNeuroGen LLC, 2160 San Fernando Dr, Elm Grove, WI 53122, USA

Abstract

Bronchopulmonary dysplasia (BPD) is a lung complication of premature births. The leading causes of BPD are oxidative stress (OS) from oxygen treatment, infection or inflammation, and mechanical ventilation. OS activates alveolar myeloid cells with subsequent myeloperoxidase (MPO)-mediated OS. Premature human neonates lack sufficient antioxidative capacity and are susceptible to OS. Unopposed OS elicits inflammation, endoplasmic reticulum (ER) stress, and cellular senescence, culminating in a BPD phenotype. Poor nutrition, patent ductus arteriosus, and infection further aggravate OS. BPD survivors frequently suffer from reactive airway disease, neurodevelopmental deficits, and inadequate exercise performance and are prone to developing early-onset chronic obstructive pulmonary disease. Rats and mice are commonly used to study BPD, as they are born at the saccular stage, comparable to human neonates at 22–36 weeks of gestation. The alveolar stage in rats and mice starts at the postnatal age of 5 days. Because of their well-established antioxidative capacities, a higher oxygen concentration (hyperoxia, HOX) is required to elicit OS lung damage in rats and mice. Neutrophil infiltration and ER stress occur shortly after HOX, while cellular senescence is seen later. Studies have shown that MPO plays a critical role in the process. A novel tripeptide, N-acetyl-lysyltyrosylcysteine amide (KYC), a reversible MPO inhibitor, attenuates BPD effectively. In contrast, the irreversible MPO inhibitor—AZD4831—failed to provide similar efficacy. Interestingly, KYC cannot offer its effectiveness without the existence of MPO. We review the mechanisms by which this anti-MPO agent attenuates BPD.

Funder

NHLBI

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3