Mitigating Dietary Microplastic Accumulation and Oxidative Stress Response in European Seabass (Dicentrarchus labrax) Juveniles Using a Natural Microencapsulated Antioxidant

Author:

Zarantoniello Matteo1ORCID,Cattaneo Nico1ORCID,Conti Federico1ORCID,Carrino Margherita1,Cardinaletti Gloriana2ORCID,Şener İdris1ORCID,Olivotto Ike1ORCID

Affiliation:

1. Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy

2. Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy

Abstract

Aquafeed’s contamination by microplastics can pose a risk to fish health and quality since they can be absorbed by the gastrointestinal tract and translocate to different tissues. The liver acts as a retaining organ with the consequent triggering of oxidative stress response. The present study aimed to combine the use of natural astaxanthin with natural-based microcapsules to counteract these negative side effects. European seabass juveniles were fed diets containing commercially available fluorescent microplastic microbeads (1–5 μm; 50 mg/kg feed) alone or combined with microencapsulated astaxanthin (AX) (7 g/kg feed; tested for half or whole feeding trial—30 or 60 days, respectively). Fish from the different dietary treatments did not evidence variations in survival and growth performance and did not show pathological alterations at the intestinal level. However, the microplastics were absorbed at the intestinal level with a consequent translocation to the liver, leading, when provided solely, to sod1, sod2, and cat upregulation. Interestingly, the dietary implementation of microencapsulated AX led to a mitigation of oxidative stress. In addition, the microcapsules, due to their composition, promoted microplastic coagulation in the fish gut, limiting their absorption and accumulation in all the tissues analyzed. These results were supported by in vitro tests, which demonstrated that the microcapsules promoted microplastic coagula formation too large to be absorbed at the intestinal level and by the fact that the coagulated microplastics were released through the fish feces.

Funder

The Scientific and Technological Research Council of Turkey

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3