Cysteine Is the Only Universally Affected and Disfavored Proteomic Amino Acid under Oxidative Conditions in Animals

Author:

Schindeldecker Mario12ORCID,Moosmann Bernd13ORCID

Affiliation:

1. Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany

2. Institute for Pathology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany

3. Institute for Quantitative and Computational Biosciences, Johannes Gutenberg University, 55128 Mainz, Germany

Abstract

Oxidative modifications of amino acid side chains in proteins are a hallmark of oxidative stress, and they are usually regarded as structural damage. However, amino acid oxidation may also have a protective effect and may serve regulatory or structural purposes. Here, we have attempted to characterize the global redox role of the 20 proteinogenic amino acids in animals by analyzing their usage frequency in 5 plausible evolutionary paradigms of increased oxidative burden: (i) peroxisomal proteins versus all proteins, (ii) mitochondrial proteins versus all proteins, (iii) mitochondrially encoded respiratory chain proteins versus all mitochondrial proteins, (iv) proteins from long-lived animals versus those from short-lived animals, and (v) proteins from aerobic, free-living animals versus those from facultatively anaerobic animals. We have found that avoidance of cysteine in the oxidative condition was the most pronounced and significant variation in the majority of comparisons. Beyond this preeminent pattern, only local signals were observed, primarily increases in methionine and glutamine as well as decreases in serine and proline. Hence, certain types of cysteine oxidation appear to enforce its proteome-wide evolutionary avoidance despite its essential role in disulfide bond formation and metal ligation. The susceptibility to oxidation of all other amino acids appears to be generally unproblematic, and sometimes advantageous.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3