Selenium-Enriched E. coli Bacteria Mitigate the Age-Associated Degeneration of Cholinergic Neurons in C. elegans

Author:

Zytner Palina1ORCID,Kutschbach Anne1ORCID,Gong Weiye1ORCID,Ohse Verena Alexia1ORCID,Taudte Laura2,Kipp Anna Patricia2ORCID,Klotz Lars-Oliver1ORCID,Priebs Josephine1ORCID,Steinbrenner Holger1ORCID

Affiliation:

1. Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, D-07743 Jena, Germany

2. Institute of Nutritional Sciences, Department of Nutritional Physiology, Friedrich Schiller University Jena, D-07743 Jena, Germany

Abstract

Selenium (Se) is an essential trace element for humans and animals, but high-dose supplementation with Se compounds, most notably selenite, may exert cytotoxic and other adverse effects. On the other hand, bacteria, including Escherichia coli (E. coli), are capable of reducing selenite to red elemental Se that may serve as a safer Se source. Here, we examined how a diet of Se-enriched E. coli bacteria affected vital parameters and age-associated neurodegeneration in the model organism Caenorhabditis elegans (C. elegans). The growth of E. coli OP50 for 48 h in medium supplemented with 1 mM sodium selenite resulted in reddening of the bacterial culture, accompanied by Se accumulation in the bacteria. Compared to nematodes supplied with the standard E. coli OP50 diet, the worms fed on Se-enriched bacteria were smaller and slimmer, even though their food intake was not diminished. Nevertheless, given the choice, the nematodes preferred the standard diet. The fecundity of the worms was not affected by the Se-enriched bacteria, even though the production of progeny was somewhat delayed. The levels of the Se-binding protein SEMO-1, which serves as a Se buffer in C. elegans, were elevated in the group fed on Se-enriched bacteria. The occurrence of knots and ruptures within the axons of cholinergic neurons was lowered in aged nematodes provided with Se-enriched bacteria. In conclusion, C. elegans fed on Se-enriched E. coli showed less age-associated neurodegeneration, as compared to nematodes supplied with the standard diet.

Funder

Deutsche Forschungsgemeinschaft

State of Thuringia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3