ERK2 Is a Promoter of Cancer Cell Growth and Migration in Colon Adenocarcinoma

Author:

Parascandolo Alessia1,Benincasa Giulio2ORCID,Corcione Francesco3,Laukkanen Mikko O.14ORCID

Affiliation:

1. Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy

2. Italo Foundation, 20146 Milano, Italy

3. Clinica Mediterranea, 80122 Naples, Italy

4. Center for Experimental Endocrinology and Oncology (IEOS), CNR-IEOS, Via Pansini 5, 80131 Naples, Italy

Abstract

ERK1/2 phosphorylation is frequently downregulated in the early phase of colon tumorigenesis with subsequent activation of ERK5. In the current work, we studied the advantages of ERK1/2 downregulation for tumor growth by dissecting the individual functions of ERK1 and ERK2. The patient sample data demonstrated decreased ERK1/2 phosphorylation in the early phase of tumorigenesis followed by increased phosphorylation in late-stage colon adenocarcinomas with intratumoral invasion or metastasis. In vitro results indicated that SOD3-mediated coordination of small GTPase RAS regulatory genes inhibited RAS-ERK1/2 signaling. In vitro and in vivo studies suggested that ERK2 has a more prominent role in chemotactic invasion, collective migration, and cell proliferation than ERK1. Of note, simultaneous ERK1 and ERK2 expression inhibited collective cell migration and proliferation but tended to promote invasion, suggesting that ERK1 controls ERK2 function. According to the present data, phosphorylated ERK1/2 at the early phase of colon adenocarcinoma limits tumor mass expansion, whereas reactivation of the kinases at the later phase of colon carcinogenesis is associated with the initiation of metastasis. Additionally, our results suggest that ERK1 is a regulatory kinase that coordinates ERK2-promoted chemotactic invasion, collective migration, and cell proliferation. Our findings indicate that ROS, especially H2O2, are associated with the regulation of ERK1/2 phosphorylation in colon cancer by either increasing or decreasing kinase activity. These data suggest that ERK2 has a growth-promoting role and ERK1 has a regulatory role in colon tumorigenesis, which could lead to new avenues in the development of cancer therapy.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3