Affiliation:
1. Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
2. KIIT (Kangwon Institute of Inclusive Technology), Kangwon National University, Chuncheon 24341, Republic of Korea
Abstract
Bacterial infections can lead to the formation of chronic wounds and delay the wound-healing process. Therefore, it is important to explore safe and efficient antimicrobial agents that have wound-healing and biocompatible properties. In this study, novel starch-fabricated silver nitroprusside nanoparticles (S-AgNP NPs) were prepared for biocompatible wound-healing applications. The study showed that S-AgNP NPs are spherical, with an average size of 356 ± 22.28 d. nm and zeta potential of −27.8 ± 2.80 mV, respectively. Furthermore, the FTIR and XRD results showed that S-AgNP NPs have functional groups and crystal structures from the silver nitroprusside nanoparticles (AgNP NPs) and starch. Additionally, S-AgNP NPs showed excellent bacterial and biofilm inhibition on B. cereus (15.6 μg/mL), L. monocytogenes (15.6 μg/mL), S. aureus (31.3 μg/mL), E. coli (31.3 μg/mL) and S. enterica (62.5 μg/mL). Moreover, S-AgNP NPs promoted cell migration and proliferation at a concentration of 62.5 μg/mL compared to AgNP NPs. Meanwhile, S-AgNP NPs had good biocompatibility and low cytotoxicity compared to AgNP NPs. Therefore, this study provided new ideas for the development of wound-healing agents with bacteriostatic properties in chronic wounds.
Funder
National Research Foundation of Korea
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献