Indian Almond (Terminalia catappa Linn.) Leaf Extract Extends Lifespan by Improving Lipid Metabolism and Antioxidant Activity Dependent on AMPK Signaling Pathway in Caenorhabditis elegans under High-Glucose-Diet Conditions

Author:

Kim Yebin1,Lee Seul-bi1,Cho Myogyeong1,Choe Soojin2,Jang Miran12

Affiliation:

1. Department of Smart Food and Drug, Inje University, Gimhae 50834, Republic of Korea

2. Department of Food Technology and Nutrition, Inje University, Gimhae 50834, Republic of Korea

Abstract

This study aimed to evaluate the antioxidant and antiaging effects of Indian almond (Terminalia catappa Linn.) leaf extract (TCE) on high-glucose (GLU)-induced obese Caenorhabditis elegans. Since TCE contains high contents of flavonoids and phenolics, strong radical scavenging activity was confirmed in vitro. The stress-resistance effect of TCE was confirmed under thermal and oxidative stress conditions at nontoxic tested concentrations (6.25, 12.5, and 25 μg/mL). GLU at 2% caused lipid and reactive oxygen species (ROS) accumulation in C. elegans, and TCE inhibited lipid and ROS accumulation under both normal and 2% GLU conditions in a concentration-dependent manner. In addition, TCE proved to be effective in prolonging the lifespan of C. elegans under normal and 2% GLU conditions. The ROS reduction effect of TCE was abolished in mutants deficient in daf-16/FOXO and skn-1/Nrf-2. In addition, the lifespan-extending effect of TCE in these two mutants disappeared. The lifespan-extending effect was abolished even in atgl-1/ATGL-deficiency mutants. The TCE effect was reduced in aak-1/AMPK-deficient mutants and completely abolished under 2% GLU conditions. Therefore, the effect of prolonging lifespan by inhibiting lipid and ROS accumulation under the high GLU conditions of TCE is considered to be the result of atgl-1, daf-16, and skn-1 being downregulated by aak-1. These results suggest that the physiological potential of TCE contributes to antiaging under metabolic disorders.

Funder

National Research Foundation of Korea

Korean government

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference51 articles.

1. The medical risks of obesity;Postgrad. Med.,2009

2. Metabolic syndrome and inflammation in adipose tissue occur at different times in animals submitted to a high-sugar/fat diet;Francisqueti;J. Nutr. Sci.,2017

3. High-sugar diet leads to obesity and metabolic diseases in ad libitum-fed rats irrespective of caloric intake;Oliveira;Arch. Endocrinol. Metab.,2020

4. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease;Johnson;Am. J. Clin. Nutr.,2007

5. (2012, May 21). Wormbook. Available online: http://www.wormbook.org/chapters/www_feeding/feeding.html.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3