Citrus Carotenoid Extracts Promote ROS Accumulation and Induce Oxidative Stress to Exert Anti-Proliferative and Pro-Apoptotic Effects in MDA-MB-231 Cells

Author:

Wei Juanjuan1,Ye Zimao1,Li Yurong1,Li Yi2,Zhou Zhiqin13

Affiliation:

1. Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China

2. Zhejiang Citrus Research Institute, Taizhou 318020, China

3. The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China

Abstract

Citrus fruits are economically significant crops worldwide, as they contain various bioactive compounds that possess health-promoting properties. Carotenoids, as the most important component in citrus, exhibit notable pharmacological activities, such as antioxidation and anticancer, which make carotenoids valuable in the prevention and treatment of breast cancer. In this study, after treatment with carotenoid extracts from XiYou (XY) and ZaoHongQiCheng (ZH), we evaluated the cytotoxicity, apoptosis, antioxidant system, and oxidative stress induced by ROS overproduction and MMP damage in MDA-MB-231 cells. The analysis confirmed that cell proliferation was inhibited in a concentration-dependent manner, accompanied by G0/G1 arrest and cell apoptosis. XY and ZH promoted the accumulation of ROS, decreased MMP, increased malondialdehyde (MDA) levels, consumed glutathione (GSH), and reduced the activity of antioxidant enzymes (peroxidase (POD), catalase (CAT), glutathione reductase (GR), and superoxide dismutase (SOD)). Meanwhile, XY and ZH induced apoptosis through the mitochondrial pathway by significantly upregulated P53, BAX, caspase-3, caspase-7, and caspase-9 gene expression levels and downregulated Bcl-2. Carotenoid-rich extracts were found to cause oxidative stress by enhancing ROS production through their pro-oxidative potential, and the aggravation of oxidative processes promotes apoptosis in MDA-MB-231 cells. These results indicate that citrus carotenoids can be used as potential pro-oxidants and have the potential to be developed into products for the prevention or treatment of breast cancer.

Funder

Natural Science Foundation of Chongqing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3