Exploring the Bioactive Properties and Therapeutic Benefits of Pear Pomace

Author:

Ferreira Joana1ORCID,Tkacz Karolina2ORCID,Turkiewicz Igor Piotr2ORCID,Santos Isabel3,Camoesas e Silva Mariana4,Lima Ana3ORCID,Sousa Isabel1ORCID

Affiliation:

1. LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal

2. Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland

3. Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisboa, Portugal

4. Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisboa, Portugal

Abstract

The fruit juice industry generates a significant amount of waste, with a strong impact on the environment and the economy. Therefore, researchers have been focusing on the characterization of resources considered as food waste. This work provides information about the lipophilic and polar metabolites of pear pomace flours (PPFs) as a tool that can shed more light on the bioactive potential of this residue. Using UPLC-PDA, UPLC-FLR, and GC-MS, the study identified and quantified PPF’s polar and non-polar metabolites. Essential, conditional, and non-essential amino acids were found, with asparagine being the most abundant. Isoprenoids, including lutein, zeaxanthin, and carotene isomers, ranged from 10.8 to 22.9 mg/100 g dw. Total flavonoids and phenolic compounds were 520.5–636.4 mg/100 g dw and 536.9–660.1 mg/100 g dw, respectively. Tocotrienols and tocopherols were identified, with concentrations of 173.1–347.0 mg/100 g dw and 468.7–913.4 mg/100 g dw. Fatty acids were the major non-polar compounds. All fractions significantly reduced matrix metalloproteinase-9 (MMP-9) activity. Although PPF had lower antioxidant potential (3–6 mmol Trolox/100 g dw), it inhibited AChE and BuChE by 23–30% compared to physostigmine salicylate. These findings suggest that pear pomace waste can be repurposed into functional products with valuable bioactive properties by re-introducing it in the food chain.

Funder

Recuperação e Resiliência (PRR) e Fundos Europes NextGeneration EU

LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3