Repurposing Glutathione Transferases: Directed Evolution Combined with Chemical Modification for the Creation of a Semisynthetic Enzyme with High Hydroperoxidase Activity

Author:

Axarli Irene1,Ataya Farid2ORCID,Labrou Nikolaos E.1ORCID

Affiliation:

1. Laboratory of Enzyme Technology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece

2. Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

Glutathione peroxidases (GPXs) are antioxidant selenoenzymes, which catalyze the reduction of hydroperoxides via glutathione (GSH), providing protection to cells against oxidative stress metabolites. The present study aims to create an efficient semisynthetic GPX based on the scaffold of tau class glutathione transferase (GSTU). A library of GSTs was constructed via DNA shuffling, using three homologue GSTUs from Glycine max as parent sequences. The DNA library of the shuffled genes was expressed in E. coli and the catalytic activity of the shuffled enzymes was screened using cumene hydroperoxide (CuOOH) as substrate. A chimeric enzyme variant (named Sh14) with 4-fold enhanced GPX activity, compared to the wild-type enzyme, was identified and selected for further study. Selenocysteine (Sec) was substituted for the active-site Ser13 residue of the Sh14 variant via chemical modification. The GPX activity (kcat) and the specificity constant (kcat/Κm) of the evolved seleno-Sh14 enzyme (SeSh14) was increased 177- and 2746-fold, respectively, compared to that of the wild-type enzyme for CuOOH. Furthermore, SeSh14 effectively catalyzed the reduction of hydrogen peroxide, an activity that is completely undetectable in all GSTs. Such an engineered GPX-like biocatalyst based on the GSTU scaffold might serve as a catalytic bioscavenger for the detoxification of hazardous hydroperoxides. Furthermore, our results shed light on the evolution of GPXs and their structural and functional link with GSTs.

Funder

Deputyship for Research & Innovation, “Ministry of Education” in Saudi Arabia

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3