Green Synthesis of Metallic Nanoparticles from Quercus Bark Extracts: Characterization and Functional Properties

Author:

Coman Năstaca-Alina1,Nicolae-Maranciuc Alexandra23ORCID,Berța Lavinia4ORCID,Nicolescu Alexandru5ORCID,Babotă Mihai56ORCID,Man Adrian7ORCID,Chicea Dan2ORCID,Farczadi Lenard8,Jakab-Farkas László9,Silva Barbara1011ORCID,Veiga-Matos Jéssica1011ORCID,Tanase Corneliu612ORCID

Affiliation:

1. Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania

2. Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania

3. Institute for Interdisciplinary Studies and Research (ISCI), Lucian Blaga University of Sibiu, 550024 Sibiu, Romania

4. Department of General and Inorganic Chemistry, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania

5. Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania

6. Research Center of Medicinal and Aromatic Plants, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania

7. Department of Microbiology, Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania

8. Chromatography and Mass Spectrometry Laboratory, Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania

9. Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, 540485 Târgu Mures, Romania

10. UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal

11. Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal

12. Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania

Abstract

Quercus species are utilized for their durable wood, providing sustenance for wildlife, conserving biodiversity, and contributing ecological, medicinal, and esthetic benefits to ecosystems and landscapes. In this study, we aimed to use the bark of three Quercus species (Q. dalechampi, Q. fraineto, and Q. petraea) for the synthesis of silver and gold nanoparticles (AgNPs and AuNPs). The aqueous extracts from the bark of Quercus sp. acted both as reducing and stabilizing agent, facilitating the rapid synthesis of AuNPs (AuQD, AuQF, and AuQP) and AgNPs (AgQD, AgQF, and AgQP). The obtained nanoparticles were characterized using UV-vis spectroscopy, TEM, DLS, and FTIR. Characterizations revealed that the nanoparticles exhibited a variety of shapes, such as polygonal, triangular, and spherical forms, with sizes ranging between 14 and 24 nm for AuNPs and 45–70 nm for AgNPs. The total phenolic content was assessed through spectroscopic methods, while several individual phenolic compounds were identified and quantified using UPLC-PDA. Furthermore, we assessed the antioxidant, antibacterial, and antifungal capacities of AuNPs, AgNPs, and raw extracts. The highest antioxidant activity was observed for raw extracts, followed by AgNPs and AuNPs, while the most potent antibacterial and antifungal activity was observed in AgQP. Moreover, cytotoxicity was examined in a human keratinocyte cell line (HaCaT). The results indicated no cytotoxic effects for AuNPs, while AgNPs and the raw extracts exhibited cytotoxic effects after 48 h of incubation. This research underscores the multifaceted utility of Quercus bark extracts in the green synthesis of metallic nanoparticles and their subsequent bioactivity assessment, suggesting promising perspectives for their application in various fields while urging cautious consideration of their cytotoxic implications.

Funder

Fundação para a Ciência e a Tecnologia

Research Unit on Applied Molecular Biosciences—UCIBIO

Associate Laboratory Institute for Health and Bioeconomy—i4HB

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3