Oral Supplementation of Ozonated Sunflower Oil Augments Plasma Antioxidant and Anti-Inflammatory Abilities with Enhancement of High-Density Lipoproteins Functionality in Rats

Author:

Cho Kyung-Hyun1ORCID,Kim Ji-Eun1,Lee Myeong-Sung1,Bahuguna Ashutosh1

Affiliation:

1. Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea

Abstract

Research on ozonated sunflower oil (OSO) is mostly restricted to its topical application, whereas the functional and toxicological assessment of oral OSO consumption is yet to be solved. Herein, OSO was orally supplemented in rats to assess the impact on plasma antioxidant status, low-density lipoproteins (LDL), and high-density lipoproteins (HDL). Also, the functionality of HDL from the OSO-supplemented rats (OSO-HDL) was tested against carboxymethyllysine (CML)- induced hyperinflammation in embryo and adult zebrafish. The results revealed that four weeks of OSO supplementation (3 g/kg BW/day) had no adverse effect on rats’ hematological and blood biochemical profiles. Nonetheless, decreased interleukin (IL)-6, and LDL-C levels, along with enhanced ferric ion reduction ability (FRA) and sulfhydryl content, were observed in the plasma of OSO-supplemented rats compared to the control and sunflower oil (SO) supplemented group. In addition, OSO supplementation stabilized apoA-I/HDL and augmented HDL-allied paraoxonase (PON)-1 activity. The microinjection of OSO-HDL (10 nL, 2 mg/mL) efficiently prevented the CML (500 ng)-induced zebrafish embryo mortality and developmental deformities. Similarly, OSO-HDL thwarted CML-posed neurotoxicity and demonstrated a significant hepatoprotective effect against CML-induced fatty liver changes, hepatic inflammation, oxidative stress, and apoptosis, as well as exhibiting a noticeable influence to revert CML-induced dyslipidemia. Conclusively, OSO supplementation demonstrated no toxic effects on rats, ameliorated plasma antioxidant status, and positively influenced HDL stability and functionality, leading to a protective effect against CML-induced toxicity in zebrafish.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3