Responses of Digestive, Antioxidant, Immunological and Metabolic Enzymes in the Intestines and Liver of Largemouth Bass (Micropterus salmoides) under the Biofloc Model

Author:

Jin Yuqin1,Meng Shunlong12ORCID,Xu Huimin2,Song Chao12,Fan Limin12,Qiu Liping2,Li Dandan2

Affiliation:

1. Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China

2. Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Risk Assessment Laboratory for Environmental Factors of Aquatic Product Quality and Safety of the Ministry of Agriculture, Key Open Laboratory of Inland Fishery Ecological Environment and Resources, Wuxi 214081, China

Abstract

To investigate the activities of intestinal digestive enzymes, liver antioxidant enzymes, immunological enzymes, and glucometabolic enzymes in largemouth bass (Micropterus salmoides) under the biofloc model, an experiment was conducted in 300-liter glass tanks. The experiment comprised a control group, which was fed a basal diet, and a biofloc group, where glucose was added to maintain a C/N ratio of 15. Each group had three parallel setups, with a stocking density of 20 fish per tank. The experiment ran for 60 days, employing a zero-water exchange aquaculture model. The results showed that at the end of the culture period, there were no significant differences between the initial weight, final weight, WGR, SGR, and SR of the biofloc group and the control group of largemouth bass (p > 0.05), whereas the lower FCR and the higher PER in the biofloc group were significant (p < 0.05); intestinal α-amylase, trypsin, and lipase activities of largemouth bass in the biofloc group were significantly increased by 37.20%, 64.11%, and 51.69%, respectively, compared with the control group (p < 0.05); liver superoxide dismutase and catalase activities, and total antioxidant capacity of largemouth bass in the biofloc group were significantly increased by 49.26%, 46.87%, and 98.94% (p < 0.05), while the malondialdehyde content was significantly reduced by 19.91% (p < 0.05); liver lysozyme, alkaline phosphatase, and acid phosphatase activities of largemouth bass in the biofloc group were significantly increased by 62.66%, 41.22%, and 29.66%, respectively (p < 0.05); liver glucokinase, pyruvate kinase, glucose-6-phosphate kinase, pyruvate kinase, glucose-6-phosphatase, and glycogen synthase activities were significantly increased by 46.29%, 99.33%, 32.54%, and 26.89%, respectively (p < 0.05). The study showed that the biofloc model of culturing largemouth bass can not only enhance digestive enzyme activities, antioxidant capacity, and immune response but can also promote the process of glucose metabolism and reduce feeding costs. This study provides data support for healthy culturing of largemouth bass in future production, provides a theoretical reference for optimizing the biofloc technology culture model, and is crucial for promoting the healthy and green development of aquaculture.

Funder

CARS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3