Capsaicin Modulates Hepatic and Intestinal Inflammation and Oxidative Stress by Regulating the Colon Microbiota

Author:

Pang Xiaotong1,Wei Xin1,Wu Yanyan1,Nan Shanshan1ORCID,Feng Jiaqi1,Wang Fang1,Yao Min2,Nie Cunxi1ORCID

Affiliation:

1. College of Animal Science and Technology, Shihezi University, Shihezi 832000, China

2. School of Medicine, Shihezi University, Shihezi 832000, China

Abstract

We aimed to investigate the role of capsaicin (CAP) in modulating lipopolysaccharide (LPS)-induced hepatic and intestinal inflammation, oxidative stress, and its colonic microflora in mice. Thirty healthy male Kunming mice with similar body weights were randomly assigned to three groups: the control group (CON), the LPS group, and the CAP group, with ten mice in each group. The CON and the LPS groups received a daily dose of normal saline, respectively, while the CAP group received an equivalent dose of CAP. On the 28th day of the experiment, the LPS and the CAP groups were intraperitoneally injected with LPS, while the CON group was injected with an equal volume of normal saline. The results lead to the following conclusions. Compared to the LPS group, CAP improved the loss of hepatic lobular structure and significantly increased the duodenal villus length and ratio of villus length to crypt depth. CAP increased hepatic and colon interleukin-10 (IL-10) and decreased IL-6, IL-1β, and tumor necrosis factor (TNF-α) levels. CAP also increased hepatic catalase (CAT), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) expression, and decreased malondialdehyde (MDA) levels. CAP significantly increased the relative abundances of Mucispirillum, Helicobacter, Prevotellaceae-UCG-001, Colidextribacter, unclassified-f-Oscillospiraceae, and Odoribacter, some of which were closely related to hepatic and colonic immune and oxidative markers. CAP also decreased the overall content of short-chain fatty acids, except for propionic acid. Overall, CAP can regulate the colon microbiota and exert anti-inflammatory and antioxidant effects. Whether CAP exerts its anti-inflammatory and antioxidant effects by modulating the colonic microflora, mainly Mucispirillum spp. and Helicobacter spp., requires further investigation.

Funder

the major scientific and technological projects of XPCC

Xinjiang key research and development project

Key scientific and technological projects of XPCC

Research Initiation Programme for High-level Talents of Shihezi University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3