Strain-Specific Benefits of Bacillus on Growth, Intestinal Health, Immune Modulation, and Ammonia-Nitrogen Stress Resilience in Hybrid Grouper

Author:

Han Congjie12,Shi Huizhong13,Cui Congcong12,Wang Jiawen12,Li Ling12,Bei Weilie12,Cai Yan12,Wang Shifeng12

Affiliation:

1. Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China

2. Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China

3. School of Life and Health Sciences, Hainan University, Haikou 570228, China

Abstract

In the dynamic field of intensive aquaculture, the strategic application of probiotics has become increasingly crucial, particularly for enhancing resistance to environmental stressors such as ammonia-nitrogen. Over a 42-day period, this study investigated the effects of different probiotic strains—Bacillus subtilis (BS, 6-3-1, and HAINUP40)—on the health and resilience of hybrid groupers. Each strain, distinct in its origin, was assessed for its influence on growth performance, antioxidant capacity, immune gene expressions, and ammonia-nitrogen stress response in the hybrid grouper. The experimental design included a control group and three experimental groups, each supplemented with 1 × 108 CFU/g of the respective probiotic strains, respectively. Our results demonstrated notable differences in growth parameters, including final body weight (FBW) and feed conversion ratio (FCR). The 6-3-1 strain, originating from grouper, exhibited significant improvements in growth, oxidative capacity, and intestinal health. Conversely, the BS strain achieved the highest survival rates under ammonia-nitrogen stress, indicating its superior ability to regulate inflammatory responses despite its less pronounced growth-promoting effects. The HAINUP40 strain was distinguished for its growth enhancement and improvements in intestinal health, though it also showed significant activation of inflammatory genes and decreased resistance to ammonia-nitrogen stress after extended feeding. The uniqueness of this study lies in its detailed examination of the strain-specific effects of probiotics on fish in the context of ammonia-nitrogen stress, a significant challenge in contemporary aquaculture. The research revealed that host-derived probiotics, particularly the 6-3-1 strain, provided more comprehensive benefits for growth performance and stress resilience. In contrast, the BS and HAINUP40 strains exhibited varying efficiencies, with BS excelling in stress resistance and HAINUP40 promoting growth and gut health. In conclusion, this study underscores the complex roles of different probiotic strains in aquaculture, contributing to the understanding of probiotic applications and presenting new approaches to address the challenges of intensive farming.

Funder

Hainan Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3