A Holistic Scalability Strategy for Time Series Databases Following Cascading Polyglot Persistence

Author:

Calatrava Carlos GarciaORCID,Fontal Yolanda Becerra,Cucchietti Fernando M.

Abstract

Time series databases aim to handle big amounts of data in a fast way, both when introducing new data to the system, and when retrieving it later on. However, depending on the scenario in which these databases participate, reducing the number of requested resources becomes a further requirement. Following this goal, NagareDB and its Cascading Polyglot Persistence approach were born. They were not just intended to provide a fast time series solution, but also to find a great cost-efficiency balance. However, although they provided outstanding results, they lacked a natural way of scaling out in a cluster fashion. Consequently, monolithic approaches could extract the maximum value from the solution but distributed ones had to rely on general scalability approaches. In this research, we proposed a holistic approach specially tailored for databases following Cascading Polyglot Persistence to further maximize its inherent resource-saving goals. The proposed approach reduced the cluster size by 33%, in a setup with just three ingestion nodes and up to 50% in a setup with 10 ingestion nodes. Moreover, the evaluation shows that our scaling method is able to provide efficient cluster growth, offering scalability speedups greater than 85% in comparison to a theoretically 100% perfect scaling, while also ensuring data safety via data replication.

Funder

Spanish Ministry of Science and Innovation

Government of Catalonia

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Reference29 articles.

1. Time Series Management Systems: A Survey

2. The DB-Engines Ranking, according to Their Popularity https://db-engines.com/en/ranking

3. NagareDB: A Resource-Efficient Document-Oriented Time-Series Database

4. Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Services;Gilbert,2002

5. Characterization of data compression across CPU platforms and accelerators;Promberger,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Techniques Used in Time Series Databases and Their Internals;2024 9th International Conference on Big Data Analytics (ICBDA);2024-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3