Applying Characteristic Impedance Compensation Cut-Outs to Full Radio Frequency Chains in Multi-Layer Printed Circuit Board Designs

Author:

Barzdenas Vaidotas1ORCID,Vasjanov Aleksandr1ORCID

Affiliation:

1. Department of Computer Science and Communications Technologies, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania

Abstract

Modern wireless communication systems are of utmost importance to various sectors such as healthcare, education, the household, and the advancement of emerging technologies like the internet of things, autonomous vehicles, and the enhancement of 5G. Further development and improvement of these systems drives the need for small dimension, high integration and density, and cost-effective electronic devices. Achieving optimal performance in wireless electronic devices involves overcoming engineering challenges related to microstrip line signal integrity. This research addresses the impact of surface mount technology (SMT) component pads on signal integrity, proposing a novel high-frequency microstrip line structure for mitigating impedance discontinuities. The study introduces stepped microstrip lines and explores characteristic impedance compensation techniques. A six-layer printed circuit board (PCB) structure is presented, and the effects of compensation on signal integrity are analyzed using time-domain reflectometry and scattering parameter measurements. The results demonstrate the effectiveness of compensation methods in aligning characteristic impedance with desired values, thereby ensuring improved impedance matching and transmission coefficients. The average over-the-length impedance for the proposed structure with compensation applied was measured to be 52.7 Ω, which is only 1.3 Ω (2.5%) more than that of the reference microstrip. Applying reference plane cut-outs leads to a maximum compensated absolute value of more than 30 Ω to reach the target impedance with a 10% tolerance. This research contributes valuable insights for advancing wireless communication systems and maintaining robustness in high-frequency microstrip transmission lines.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3