Prediction of Cable Behavior Using Finite Element Analysis Results for Flexible Cables

Author:

Kim Hyeonjin1ORCID,Kim Jinhyun1

Affiliation:

1. Department of Mechanical Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

Abstract

In actual industrial sites, verifying the framework for cable manipulation is crucial. Therefore, it is necessary to simulate the deformation of the cable to predict its behavior accurately. By simulating the behavior in advance, it is possible to reduce the time and cost required for work. Although finite element analysis is used in various fields, the results may differ from the actual behavior depending on the method of defining the analysis model and analysis conditions. This paper aims to select appropriate indicators that can effectively cope with finite element analysis and experiments during cable winding work. We perform finite element analysis of the behavior of flexible cables and compare the analysis results with results from experiments. Despite some differences between the experimental and analysis outcomes, an indicator was developed through trial and error to align the two cases. Errors occurred during the experiments depending on the analysis and experimental conditions. To address this, weights were derived through optimization to update the cable analysis results. Additionally, deep learning was utilized to update the errors caused by material properties using the weights. This allowed for finite element analysis even when the exact physical properties of the material were unknown, ultimately improving the analysis performance.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korea government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3