Metagenomic Insight into the Microbiome and Virome Associated with Aedes aegypti Mosquitoes in Manado (North Sulawesi, Indonesia)

Author:

Bernadus Janno Berty Bradly123ORCID,Pelealu Jantje14,Kandou Grace Debbie15,Pinaria Arthur Gehart14ORCID,Mamahit Juliet Merry Eva14,Tallei Trina Ekawati36ORCID

Affiliation:

1. Entomology Study Program, Postgraduate Program, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia

2. Department of Parasitology, Faculty of Medicine, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia

3. Biomolecular Laboratory, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia

4. Faculty of Agriculture, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia

5. Faculty of Public Health, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia

6. Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia

Abstract

The aim of this study was to investigate the microbial diversity encompassing bacteria, fungi, and viruses within the composite microbial community associated with Aedes aegypti mosquitoes in Manado, Indonesia, using a whole-genome shotgun metagenomics approach. Female mosquitoes were collected and grouped into pools of 50 individuals, from which genomic DNA (gDNA) and RNA were extracted separately. Whole-genome shotgun metagenomics were performed on gDNA samples. The bioinformatics analysis encompassed quality assessment, taxonomic classification, and visualization. The evaluation of the microbial community entailed an assessment of taxa abundance and diversity using Kraken version 2.1.2. The study delineated the prevalence of dominant bacterial phyla, including Proteobacteria, with varying abundance of Firmicutes, Bacteroidota, and Actinobacteria, and notable occurrence of Tenericutes. Furthermore, the presence of the fungal phylum Ascomycota was also detected. Among the identified barcodes, Barcode04 emerged as the most abundant and diverse, while Barcode06 exhibited greater evenness. Barcode03, 05, and 07 displayed moderate richness and diversity. Through an analysis of the relative abundance, a spectrum of viruses within Ae. aegypti populations was unveiled, with Negarnaviricota constituting the most prevalent phylum, followed by Nucleocytoviricota, Uroviricota, Artverviricota, Kitrinoviricota, Peploviricota, Phixviricota, and Cossaviricota. The presence of Negarnaviricota viruses raises pertinent public health concerns. The presence of other viral phyla underscores the intricate nature of virus–mosquito interactions. The analysis of viral diversity provides valuable insights into the range of viruses carried by Ae. aegypti. The community exhibits low biodiversity, with a few dominant species significantly influencing its composition. This has implications for healthcare and ecological management, potentially simplifying control measures but also posing risks if the dominant species are harmful. This study enriches our comprehension of the microbiome and virome associated with Ae. aegypti mosquitoes, emphasizing the importance of further research to fully comprehend their ecological significance and impact on public health. The findings shed light on the microbial ecology of Ae. aegypti, offering potential insights into mosquito biology, disease transmission, and strategies for vector control. Future studies should endeavor to establish specific associations with Ae. aegypti, elucidate the functional roles of the identified microbial and viral species, and investigate their ecological implications.

Publisher

MDPI AG

Subject

Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3