Machine Learning and Image Processing Techniques for Rice Disease Detection: A Critical Analysis

Author:

Hasan Md. Mehedi1,Uddin A F M Shahab1ORCID,Akhond Mostafijur Rahman1,Uddin Md. Jashim2,Hossain Md. Alamgir2ORCID,Hossain Md. Alam1

Affiliation:

1. Department of Computer Science and Engineering, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh

2. Department of Information and Communication Technology, Islamic University, Kushtia 7003, Bangladesh

Abstract

Early rice disease detection is vital in preventing damage to agricultural product output and quantity in the agricultural field. Manual observations of rice diseases are tedious, costly, and time-consuming, especially when classifying disease patterns and color while dealing with non-native diseases. Hence, image processing and Machine Learning (ML) techniques are used to detect rice disease early and within a relatively brief time period. This article aims to demonstrate the performance of different ML algorithms in rice disease detection through image processing. We critically examined different techniques, and the outcomes of previous research have been reviewed to compare the performance of rice disease classifications. Performance has been evaluated based on the criteria of feature extraction, clustering, segmentation, noise reduction, and level of accuracy of disease detection techniques. This paper also showcases various algorithms for different datasets in terms of training methods, image preprocessing with clustering and filtering criteria, and testing with reliable outcomes. Through this review, we provide valuable insights into the current state of ML-based approaches for the early detection of rice diseases, and assist future research and improvement. In addition, we discuss several challenges that must be overcome in order to achieve effective identification of rice diseases.

Publisher

MDPI AG

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3