Transfer of the Experimental Autoimmune Glaucoma Model from Rats to Mice—New Options to Study Glaucoma Disease

Author:

Reinehr Sabrina,Reinhard Jacqueline,Wiemann Susanne,Hesse Karoline,Voss Christina,Gandej Marcel,Dick H. Burkhard,Faissner AndreasORCID,Joachim Stephanie C.ORCID

Abstract

Studies have suggested an involvement of the immune system in glaucoma. Hence, a rat experimental autoimmune glaucoma model (EAG) was developed to investigate the role of the immune response. Here, we transferred this model into mice. Either 0.8 mg/mL of the optic nerve antigen homogenate (ONA; ONA 0.8) or 1.0 mg/mL ONA (ONA 1.0) were injected in 129/Sv mice. Controls received sodium chloride. Before and 6 weeks after immunization, the intraocular pressure (IOP) was measured. At 6 weeks, retinal neurons, glia cells, and synapses were analyzed via immunohistology and quantitative real-time PCR (RT-qPCR). Additionally, optic nerves were examined. The IOP stayed in the normal physiological range throughout the study (p > 0.05). A significant reduction of retinal ganglion cells (RGCs) was noted in both immunized groups (p < 0.001). Remodeling of glutamatergic and GABAergic synapses was seen in ONA 1.0 retinas. Furthermore, both ONA groups revealed optic nerve degeneration and macrogliosis (all: p < 0.001). An increase of activated microglia was noted in ONA retinas and optic nerves (p < 0.05). Both ONA concentrations led to RGC loss and optic nerve degeneration. Therefore, the EAG model was successfully transferred from rats to mice. In further studies, transgenic knockout mice can be used to investigate the pathomechanisms of glaucoma more precisely.

Funder

Deutsche Forschungsgemeinschaft

Konrad-Adenauer-Stiftung

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3